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Evaluation metrics for Population
Synthesis
Definition of newmetrics for a robust evalua-
tion.
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Population Synthesis in one scheme

→
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Challenges in population synthesis

We cannot directly get a global synthetic population

Scalability issue Privacy issue
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How population synthesis is evaluated?

In the last 15 years, many algorithms have been applied to generate a synthetic
population.

Problem

However, there is no consensus on the assessment of a generated synthetic population!

Often, only the global distribution of the generated population is evaluated.

It omits two other criteria: the realism and the privacy.
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Interpretation in Machine Learning

Generating a synthetic population = generating a vector of mixed-type data (both
continuous and categorical attributes)

This task is called Tabular Data Synthesis. We can inspire ourselves from contributions
in this field to build relevant metrics for population synthesis.
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Evaluation criteria in the population synthesis and inMachine
Learning

We can outline the criteria of evaluation depending on the field.

Criterion PS ML Goal
Distribution X X Comparing the distribution of the generated population with

the true population.
Realism X Verifying that the generated samples are realistic
Privacy X Avoid any inference from the trainingdatausing thegenerated

data
Diversity X X Capacity of the generated data to cover all available data.
Performance on
downstream tasks

X Removing one variable from generated data and guess it from
the other variables

Table: Description and definition of the different criteria in Population Synthesis andMachine
Learning

X : most used criteria
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Distribution evaluation: Population Synthesis

Preprocessing: Conversion into categorical data

Evaluation procedure: Compare part of themultivariate distribution.

Metrics:

MAE MARE χ2 SRMSE R2 NRMSE Hellinger JS divergence Pearson Cramer’s V
Beckman et al. (1996) 2
Ye et al. (2009) 1* 1*
Farooq et al. (2013) 4* 4*
Sun and Erath (2015) 5*
Saadi et al. (2016) 1, 2, 3, 4
Borysov et al. (2019) 1, 2, 3, 4 1, 2, 3 1, 2, 3 2
Kim and Bansal (2022) 1, 2
Kukic et al. (2024) 1 1, 2, 3 1
Bigi et al. (2024) 2, 3 2, 3 2, 3
Kang et al. (2024) 1, 2

Table: Metrics used in the distribution evaluation1

1The number indicates the number of variables that are taken into account to compute themultivariate
frequencies. * indicates that the number corresponds to the total number of attributes (so it cannot be
increased)
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Distribution evaluation: Machine Learning
Distribution comparison

Preprocessing: Keep themixed data
format

Evaluation procedure: Compare the
marginals.

Metrics:

– For categorical data: Total
Variation Distance

– For numerical data:
Kolmogorov-Sirnov Test

Correlation comparison

Preprocessing: Convert into
categorical data if needed

Evaluation procedure: Compare the
correlation between each couple of
variables.

Metrics:

– For categorical data:
Contingency Similarity

– For numerical data: Pearson
Correlation Coefficient

Limitation: Nomultivariate evaluation.
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Realism evaluation: Population Synthesis

Interpretation: Generated individuals that do not exist
should not have been generated→ concept of
”Structural Zeros”

Metric: rate of ”Structural Zeros”

∑x∈Xgen
1x/∈B∪C

|Xgen|

Limitation: Curse of dimensionality
Figure: Venn diagram for
structural zeros
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Realism evaluation: Population Synthesis

Interpretation: Generated individuals that do not exist
should not have been generated→ concept of
”Structural Zeros”

Metric: rate of ”Structural Zeros”

∑x∈Xgen
1x/∈B∪C

|Xgen|

Limitation: Curse of dimensionality

Figure: Evolution of the
number of combinations with
the number of variables
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Realism evaluation: Machine Learning

(a) Real data (b) Generated data

Interpretation: Generated data should belong to the original data support

Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ

Metric:α-Precision: rate of generated samples that belongs to Sα
real

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Realism evaluation: Machine Learning

(a) Support of real data (b) Generated data

Interpretation: Generated data should belong to the original data support

Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ

Metric:α-Precision: rate of generated samples that belongs to Sα
real

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Realism evaluation: Machine Learning

(a) Alpha-support of real data (b) Generated data

Interpretation: Generated data should belong to the original data support

Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ

Metric:α-Precision: rate of generated samples that belongs to Sα
real

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Realism evaluation: Machine Learning

(a) Alpha-support of real data (b) Alpha-support on generated data

Interpretation: Generated data should belong to the original data support

Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ

Metric:α-Precision: rate of generated samples that belongs to Sα
real

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Privacy: Machine Learning

Interpretation: Generated data should not be too close
from real data.

Metrics: For each generated sample: Distance to Closest
Record (DCR) in the real data.

Post-processing: median, quantile, shortest between
training and testing data…

Limitation: Output of the post-processing could be
improved (optimal value, deeper comparison between
training and testing distances).

Figure: Illustration of the notion
of DCR
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Diversity evaluation: Population Synthesis

Interpretation: Generate individuals that exist, but were
not present in the training data→ concept of ”Sampling
Zeros”

Metric: rate of ”Sampling Zeros”

∑x∈Xgen
1x∈C\B

|Xgen|

Limitation:What is the optimal value for this metric ?
Figure: Venn diagram for
sampling zeros
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Diversity evaluation: Machine Learning

(a) Real data (b) Generated data

Interpretation: Real data should belong to the generated data support
Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ
Metric:β-Recall: rate of real samples that belongs to Sβ

gen

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Diversity evaluation: Machine Learning

(a) Alpha-support of real data (b) Beta-support on generated data

Interpretation: Real data should belong to the generated data support
Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ
Metric:β-Recall: rate of real samples that belongs to Sβ

gen

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Diversity evaluation: Machine Learning

(a) Beta-support of real data (b) Beta-support on generated data

Interpretation: Real data should belong to the generated data support
Preamble:γ-support Sγ of a distribution is the minimum volume that supports a
probability mass ofγ
Metric:β-Recall: rate of real samples that belongs to Sβ

gen

Limitation: Complex to evaluate themetrics, and requires enough data to have a good
approximation of the distribution.
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Performance on downstream tasks: Machine Learning

Main task: Machine Learning efficiency.

Idea: How efficient is a model that is trained on generated data to guess a generated
variable.

Method: Amodel is trained to guess a variable from the generated data, and then
evaluated on the (real) test data.

Limitation: It does not correspond to the objectives in our use case.
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Conclusion on literature review

Throughout the literature, we notice:

– No consensus exists to evaluate the distribution

– For other criteria, current evaluation metrics have some limitations

– Some criteria are not explored in Population Synthesis
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Complementarity of the metrics

Criterion Relevance But not sufficient
Faithful distribution Ensure looks like population Recopying training data would lead to an

almost perfect score
Realistic individuals Verify each individual is plausi-

ble
Globally, individuals may not represent the
population

Privacy protection Ensure data privacy for training
individuals

If the model learns nothing, the privacy is
respected

Table: Explanation of the necessity of several metrics for the evaluation
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Distribution metric: SRMSE

We propose using themean of the SRMSE on the distributions of all possible
combinations of three variables.

SRMSEijk(Xgen, Xtest) =
√

∑
xijk

(fgen(xijk)− ftest(xijk))
2 × |Ωi| × |Ωj| × |Ωk|

SRMSE3(Xgen, Xtest) =
1(n
3

) ∑
(i,j,k)∈({1,...,n}

3 )

SRMSEijk(Xgen, Xtest)
(1)

Arguments:

– Most widely usedmetric

– Considering the trivariate distributions allows grabbingmarginals, and
bivariate distributions without exploding the computation time

– Balancedmetric on all combinations
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Realismmetric: SSCIOT

Unrealistic individual: at least one couple of its attributes is absent from
both training and testing sets.

We propose using the Share of Samples with a Couple of Instances that is
Out of Testing data (SSCIOT).

SSCIOT(Xgen, Xtest, Xtrain) =

∑x∈Xgen

(
1− ∏

(i,j)∈({1,...,n}
2 )

1xij∈(B∪C)ij

)
|Xgen|

(2)

Arguments:

– This metric that does not suffer from the curse of
dimensionality

(B∪C)ij is the restriction of B∪C to the variables i and j

Figure: Venn diagram
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Privacy metric: Wasserstein-DCR

Goal: A generated individual should be in probability at the
same distance from a training sample and from a testing
sample.

Design of the metric:

– Compute the DCR for each set to get an
approximation of the distribution

– Compare these distributions with theWasserstein
distance

Note: this metric takes positively into account sampling zeros

(a) Privacy respected

(b) Privacy not respected
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Equations forWasserstein-DCR (WDCR)

Distance for mixed-type data: d(x, y) =
√

∑i∈num(qxi − qxj)
2 + ∑i∈cat 1xj ̸=yj

DCR between a set S and a sample x: DCR(S, x) = inf
y∈S

d(x, y)

Wasserstein Distance: W2(νDCRtest ,νDCRtrain) =
√

1
n ∑n

i=1 (DCRtesti −DCRtraini)
2

whereDCRset1 ≤ DCRset2 ≤ ... ≤ DCRsetn.
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Interst on evaluating population synthesis

With this new rigorous framework, several contributions are possible:

– Do a benchmark on the current literature

– Performmodel selection

– Test newmodels
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Evaluating the robustness of the newmetrics

Goal: Verifying the robustness (convergence and estimation of the minimal data) of the
newmetrics

Experience on census data from Ile-de-France (2015):

– Select most relevant variables in the data

– Train various models on two different data sizes (0.03% and 1%)

– Generate a synthetic population for eachmodel

– Evaluate the generated population with several testing sets from several
sizes (between 0.01% and 23% of the total population)

Note: by construction, the testing size forWasserstein-DCR is the same as the training
size, so the privacy metric is out of the study
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Robustness of the distribution and the realismmetrics

0

1

2

0.01 0.10 1.00 10.00

Size of the testing set (% of total population)

S
R

M
S

E

0.0

0.2

0.4

0.6

0.01 0.10 1.00 10.00

Size of the testing set (% of total population)

S
S

C
IO

T

Figure: Evolution of the measures with the size of the testing data

– SRMSE can be well estimated with a reduced dataset.

– SSCIOT requires at least 0.1% of the total population in the testing data for
a good estimation. This metric is based on the structure of the data and not
on statistical properties.
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Guidelines on themetrics on data management for evaluation

Recommendations in the evaluation:

– Evaluate your model with SRMSE, SSCIOT andWDCR

– Split your data in 50/50 for training/testing
At least half of data in testing is required forWDCR

– SRMSE should be evaluated by considering only the testing set
Good approximation even with low data

– For SSCIOT, we recommand to use both the training and testing sets for
the evaluation Nomethodology issue
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Conclusion

– Population synthesis misses a systematic evaluation methodology

– Current metrics do not cover the goals of population synthesis

– Wedefine three newmetrics that evaluate: the distribution, the realism
and the privacy

– Thesemetrics have been tested, and guidelines on practical aspects given

A paper is being finalised on the findings of this work
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