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Use of a synthetic population

A Synthetic Population is necessary for any agent-based models

Different use cases with agent-based models:
= Transport Simulation (W. Axhausen et al., 2016)
= Epidemic Simulation (Kerr et al., 2021)
= Social Interaction Model (Macal et al., 2014)
= Poverty modelisation (Gisby et al., 2023)
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How to pass from individuals to data ?

Mike, 40 yo, no Lisa, 29 yo, Mas-
degree, 2 cars ter Deg, O car

Jonathan, 12 yo, Zoe, 16 yo, no
no degree, O car degree, 1 «car
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How to pass from individuals to data ?
Sex | Age | Educationlevel | Number of cars
Mike, 40 yo, no Lisa, 29 yo, Mas-
degree, 2 cars ter Deg, O car M 40 NO Degree 2
% F 29 Master Degree 0
M 13 No Degree 0
F 16 No Degree 1
Jonathan, 12 yo, Zoe, 16 yo, no
no degree, O car degree, 1 «car
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Different sources of data

In transport, we have 2 main sources of data for population synthesis, whose size
depends on the country:

= Household Travel Survey (HTS) ~ 0.03% of the total population

= Census Data ~ 1% of the total population'’
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Population synthesis: using algorithm to generate a full synthetic

population from limited datasets

"In France, we can get in open-access a total reconstruction of the population y¥( Université
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Population Synthesis in one scheme
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A generated synthetic population must respect several criteria :

Criterion Goal

Distribution | Comparing the distribution of the generated population with
the true population.

Realism Verifying that each generated sample is realistic.

Originality Capacity to generate unseen samples.

Which metrics to evaluate a synthetic population?
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A generated synthetic population must respect several criteria :

Criterion

Goal

Distribution

Comparing the distribution of the generated population with
the true population.

Realism

Verifying that each generated sample is realistic.

Originality

Capacity to generate unseen samples.

Which metrics to evaluate a synthetic population?

Conclusion
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In the last 15 years, many algorithms have been applied to generate a synthetic

population, from reproduction models to Deep Generative Models.

Which algorithm is recommended for Population Synthesis?
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Data Notations

Xtrain
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—  Data for model training

— Data for model evaluation

—  Data generated by the model
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Distribution evaluation: SRMSE;

We propose using the mean of the Standardized Rooted Mean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEjj(Xgen, Xiest) = [ Y, (Faen(3%) — frest(x#))? 5[] x | x Q]
Xik
1 (1)
S/'-\)/\4$E3(XgemXtest) =7 Z SRMSE/’jk(Xgethest)

Arguments:
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Distribution evaluation: SRMSE;

We propose using the mean of the Standardized Rooted Mean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEj(Xgen: Xiest) =, |1 (Foen(x¥) = frest(x9%))* x |92 x | x |

Xik
1 2)
S/'-\)/\4$E3(XgemXtest) =7 Z SRMSE/’jk(Xgethest)

Arguments:
= Most widely used metric (SRMSE)
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Distribution evaluation: SRMSE3

We propose using the mean of the Standardized Rooted Mean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEjj(Xgen, Xiest) = [ Y, (Faen(3%) — frest(x#))? 5[] x | x Q]
Xik
1 3)
SRMSE3(Xgethest) =7 Z SRMSE/’jk(Xgethest)

(3) ([,j,k)E({L'é’n})

Arguments:
= Most widely used metric (SRMSE)
= Considering the trivariate distributions allows grabbing marginals, and bivariate
distributions without exploding the computation time (trivariate)
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Distribution evaluation: SRMSE3

We propose using the mean of the Standardized Rooted Mean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

S'L_‘>,V’SE/]'I<( genaxtest Z gen Xj )_ ftest( Uk))z X |Q/| X |Qj| X |Qk|
Xk
(4)

1
SRMSE3(Xgethest) :m Z SRMSE/’jk(Xgethest)
3 (ime(M5m)

Arguments:
= Most widely used metric (SRMSE)
= Considering the trivariate distributions allows grabbing marginals, and bivariate
distributions without exploding the computation time (trivariate)

= Balanced metric on all combinations (mean)
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Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).
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Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
etal, 2019).

Possible
combinations

A

All possible combinations of modalities theoretically
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Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
etal, 2019).

Possible
combinations

A

D

Combinations in
real population

All combinations that exist in the real population
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Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

Possible
combinations

D

Combinations in
real population

A structural zero is a sample that is a combination of attributes that do not exist in the
real population.
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Realism evaluation: Detection method in the literature

Structural Zeros: generated samples that should not have been generated (Borysov
etal, 2019).

Combinations in
the training data

Possible
combinations

A

D

Combinations in
real population

Dis not accessible in practice.
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Realism evaluation: Detection method in the literature

Structural Zeros: generated samples that should not have been generated (Borysov
etal, 2019).

Combinations in
the training data

Possible
combinations

A

Combinations in
the testing data

Combinations in
real population

Dis not accessible in practice.
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Realism evaluation: Detection method in the literature

Structural Zeros: generated samples that should not have been generated (Borysov

etal, 2019).
Possible Combinations in
combinations ”( the training data
A ”0'
‘;Q” D
"! / Combinations in
real population

An approximation is done in the literature: all samples that do belong to neither the
training data, nor the testing data is a structural zero.

Combinations in
the testing data
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Realism evaluation: Detection method in the literature

Structural Zeros: generated samples that should not have been generated (Borysov
etal, 2019).

Combinations in
the training data

Possible
combinations

A\ Missclassified
structural zero

Combinations in —
the testing data

Combinations in
real population

This detection can lead to false positive structural zeros. This phenomenon grows with
the number of attributes.
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Realism evaluation: SSC/IOT

Possible combinations

New detection method: at least one couple of its attributes is
absent from both training and testing sets

Combinations in
the training data

Combinations in
real population

Share of Samples with a Couple of Instances that is Out of Testing data:

SSCIOT(Xgen, Xtest, Xtrain) =

Combinations in
the testing data

Xgen|
Argument:

= This metric that does not suffer from the curse of dimensionality

Cijjis the restriction of Cto the variables iand j
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Originality evaluation: SSOTT

Sampling Zeros: Generated samples that are in real population, but not in training data
(Garrido et al.,, 2020).

Combinations in

Possible na
the training data

combinations

Combinations in
the testing data

Detection method:
generated samples that
belong to testing data, but
not to training data
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Originality evaluation: SSOTT

Sampling Zeros: Generated samples that are in real population, but not in training data
(Garrido et al.,, 2020).

Transform into a minimizing metric:
Share of Samples Out of Training and Testing:

Combinations in
the training data

Possible
combinations:

SSOTT —1— erxgen JLXGC\B

erxgen LB

 YeXgen Lxea\(BUC) —
= he tosing data

erxgen :H‘XEB
Our target area.
Argument:

= Minimizing metric with O as minimal score
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Models in Population Synthesis

3 types of models in Population Synthesis:

= Reproduction Models (Beckman et al., 1996; Voas and Williamson, 2000; Guo and
Bhat, 2007)
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Models in Population Synthesis

3 types of models in Population Synthesis:

= Reproduction Models (Beckman et al., 1996; Voas and Williamson, 2000; Guo and
Bhat, 2007)

= Probabilistic Models (Farooq et al,, 2013; Sun and Erath, 2015; Hu et al., 2018)
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Models in Population Synthesis

3 types of models in Population Synthesis:
= Reproduction Models (Beckman et al., 1996; Voas and Williamson, 2000; Guo and
Bhat, 2007)
= Probabilistic Models (Farooq et al,, 2013; Sun and Erath, 2015; Hu et al., 2018)

= Deep Generative Models (Borysov et al., 2019; Garrido et al., 2020; Kim and
Bansal, 2023)
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Deep Generative Models in Population Synthesis

State-of-the-art Deep Generative Model | First Implementation with Tabular
for image synthesis data in Population Synthesis
Variational Auto Encoder

(Kingma and Welling, 2013)

Borysov et al. (2019)

Table: Chronological state-of-the-art Deep Generative Model and its implementation in
Population Synthesis
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Deep Generative Models in Population Synthesis

State-of-the-art Deep Generative Model | First Implementation with Tabular
for image synthesis data in Population Synthesis
Variational Auto Encoder
(Kingma and Welling, 2013)
Generative Adversarial Network
(Goodfellow et al., 2014)

Borysov et al. (2019)

Garrido et al. (2020)

Table: Chronological state-of-the-art Deep Generative Model and its implementation in
Population Synthesis
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Deep Generative Models in Population Synthesis

State-of-the-art Deep Generative Model | First Implementation with Tabular
for image synthesis data in Population Synthesis
Variational Auto Encoder
(Kingma and Welling, 2013)
Generative Adversarial Network
(Goodfellow et al., 2014)

Borysov et al. (2019)

Garrido et al. (2020)

Diffusion Model

(Song and Ermon, 2019)

Table: Chronological state-of-the-art Deep Generative Model and its implementation in
Population Synthesis
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®
Variable 1 Variable 1 Variable 1 Variable 1
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Noising data is easy
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<— Noising
—> Sampling
® )
3 R 3 — 3
"o
Variable 1 Variable 1 Variable 1 Variable 1
1 1 1 ]
I T T 1
t=3 t=2 t=1 t=0
Diffusion aims to learn how to denoise a signal
Sampling = Denoising
Training = Noising
‘.’( Université
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Mathematical derivations of the models (Song et al.,, 2022)

Noising: dX! = f(X!, t)dt + g(t)aw

Denoising: dX! = [f(X!, t) — g(t)?Vx log p:(X?)]dt + g(t)ow
X! = [f(X!, t) — g(t)?Vx log pi(X")]dt+ g(t) oW

where:
= fis the drift function.
= gis the diffusion coefficient.

= wand w are standard Wiener processes.

2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 17/29
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But only designed for continuous data

Some terms cannot be adapted for categorical variables:

aX! = (X, t)dt+ g(t)dw 7)

aX’ = [f(X", ) — g(t)*Vxlog pi(X)]dt+g(t) (8)
Unlike VAE and GAN, diffusion cannot be apply directly for tabular data synthesis
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Adapted Diffusion model for Tabular Data Synthesis: TabSyn by

Zhang et al. (2023)

Tokenizer

Transformer
Network

Normalization

D ®

Training sample X

Detokenizer

Transformer
Network

Rescaling

DO

Reconstructed sample X
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Population Synthesis with Deep Generative Models - is it worth it?

Introduction to Diffusion models

Embedded sample

19/29

Conclusion
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Adapted Diffusion model for Tabular Data Synthesis: TabSyn by
Zhang et al. (2023)

Normalization

Transformer
Network

D ®

@ —> Gaussian Noising [—>]
«— Denoising MLP  {«—

Embedded sample Random sample
O~ N0, Txa)

®

Training sample X

Detokenizer

Rescaling

Transformer
Network

)0

Reconstructed sample X
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Adapted Diffusion model for Tabular Data Synthesis: TabSyn by
Zhang et al. (2023)

Normalization

5
5
=

Reconstructed sample X

Transformer
Network

@ —> Gaussian Noising [—>]
«— Denoising MLP  {«—

Embedded sample Random sample
Z° ~ N (0,Tna)

®

Detokenizer

Rescaling

Transformer
Network

= The model we used in our experiments

)s(

2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 19/29

References
o

Université
Gustave Eiffel



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion
0000000 0000000 [e]o]e} [e]e]e]e] } 00000000 (e]e]

Adapted Diffusion model for Tabular Data Synthesis: TabSyn by
Zhang et al. (2023)

Tokenizer

Normalization

5
5
=

Reconstructed sample X

Transformer
Network

«— Denoising MLP  {«—

Embedded sample Random sample
Z° ~ N(0,Tixa)

®

Detokenizer

Rescaling

Transformer
Network

= The model we used in our experiments
= |t was the model with the best performance for tabular data generation at the
publication of the article
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Benchmark data: French census data in 2015 in lle-de-France

Attributes description: 12 attributes (3 numerical
and 9 categorical)

Two scenarios for training data:

= Census data scenario: 1% of the population

= Household Travel Survey scenario: 0.03% of
the population

Testing data: 23% of the total population

2025/06/11 Vianey Darsel

Attribute Data type
Age integer
Sex binary
Last diploma category
Number of persons in the integer
household

Type of household category
Type of professional activity category
Family link category
Married boolean
Department category
Number of cars integer
Socio-professional category category
Type of accommodation category

Population Synthesis with Deep Generative Models - is it worth it?
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Experiments

1) Comparing Deep Generative Models with various data encoding

2) Comparing the best model from the first experiments with Probabilistic models
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Benchmark of Deep Generative Models: protocol

Comparison of five Deep Generative Models:
= Variational Auto Encoder (with and without Transformer VAE embedding)
= Generative Adversarial Network (with and without Transformer VAE embedding)
= Diffusion Model

With three different encodings for numerical variables:
= All variables are categorical
= All variables are categorical, except for age, which is continuous.

== All numerical variables are continuous.
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Benchmark of Deep Generative Models: protocol
\ 5 DGMs \ ‘ 3 data encodings
VAE (Raw data) All numerical as Categorical
VAE (Embedding data) Only Age as Continuous

GAN (Raw data)
GAN (Embedding data)

All numerical as Continuous

Diffusion
3 metrics
2 data scenarios SRMSE3
Census data (1%) SScioT
HTS (0.03%) SSOTT
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Distribution Realism Originality
SRMSE3 Ssciot SSOTT
35 50 VAE (Raw data)
30 0 & VAE (Embedding data)
© 25 . GAN (Raw data)
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g 15 2 a0 Diffusion
10
10 20
0.5
>
s
(:b‘?
35 50
3.0 80
40
25
60
o\c 2.0 30
s 2 40
10
L 10 20
0.5
0.0 N 0 L N 0
g N4 & N4 %
S S & S g
o“&\(\ °($\° 'b@g S o“&\(\ ‘b&q o"\"\o
N o N N4 o N N4
» 5 » ® K ® ®
S S
o o .
Embedding
2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it?

Conclusion
(e]e]
~
L
~

24/29

References
o

Université
Gustave Eiffel



Introduction Population Synthesis Evaluation

Models in Population Synthesis
000

Introduction to Diffusion models

Benchmark Conclusion References
o

0000000 0000000 00000 00000@00 00
Distribution Realism Originality
SRMSE3 Ssciot SSOTT
> 0 e VAE (Raw data)
30 0 & VAE (Embedding data)
© 25 . = GAN (Raw data)
fn 20 30 " GAN (Embedding data)
Qs a0 Diffusion
o 20
. o, . . .
1 2 = At 0.03%, Diffusion with

only age continuous is best
in Distribution and Realism,
and correct in Originality

>
<>‘)'1 &’b \)o"'7
. & S o
& S & &
v & ® &
S N
& Embeddin & ¢ Université
° g
d >A( Gustave Eiffel

2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 24/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References
0000000 0000000 [e]o]e} 00000 00000e00 (e]e] o

Results

Distribution Realism Originality
SRMSE; SSCloT SSOTT

> 0 = VAE (Raw data)

30 w0 & VAE (Embedding data)
o 25 GAN (Raw data)
2 2.0 30 0 GAN (Embedding data)
g 15 " 40 Diffusion

o o . . .

Iy 0 2 = At 0.03%, Diffusion with

only age continuous is best
in Distribution and Realism,
and correct in Originality

3.0 80 . . .
25 © . = At 1%, Diffusion with all
O 2 30 . . .
s B o continuous is best in
Iy 0 2 Distribution and Realism,
R— - S and almost in Originality
.(90 v(\e o{\c
<§\‘0 0&‘ 'é@q
» g0 W &
& s ——
Embedding 2 Gustave Eiffel

2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 24/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark
0000000 0000000 [e]o]e}

Conclusion
00000

000000e0 (e]e]

Comparison between Deep Generative Model and Probabilistic
Models: protocol

\ 5 Models \
Monte Carlo Markov Chain (freq.)

Monte Carlo Markov Chain (Bayesian)

Bayesian Network (tree)

Bayesian Network (hill)

Diffusion

\ 2 data scenarios

3 metrics
Census data (1%) SRMSE;
HTS (0.03%) SSCIOT
SSOTT
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Models in Population Synthesis
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Training size of 0.03% of the total population

Model Distribution Realism Originality
SRMSE | SSCIOT SSOTT
MCMC (freq.) 28.9 0% NC
MCMC (Bayesian) | 2.81 96.45% 99.99%
BN (hill) 0.773 4.62% 50.61%
BN (tree) 0.79 0.69% 48.67%
Diffusion 0.693 5.74% 38.56%
Training size of 1% of the total population
Model Distribution Realism Originality
SRMSE | SSCIOT SSOTT
MCMC (freq.) 6.34 0% NC
MCMC (Bayesian) | 2.84 98.07% 100.0%
BN (hill) 0.432 0.37% 46.29%
BN (tree) 0.676 3.4% 60.54%
Diffusion 0.422 1.82% 43.46%

Benchmark
0000000®

Conclusion
(e]e]

Table: Comparison of the best DGM with probabilistic models on three criteria.
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Conclusion

= We present three metrics evaluating the distribution, the realism, and the
originality of a synthetic population.
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Conclusion

= We present three metrics evaluating the distribution, the realism, and the
originality of a synthetic population.

= We introduce Diffusion models for Population Synthesis.

‘.’< Université
~" Gustave Eiffel
2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 27/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion
0000000 0000000 [e]o]e} 00000 00000000 [ Je]

Conclusion

= We present three metrics evaluating the distribution, the realism, and the
originality of a synthetic population.

= We introduce Diffusion models for Population Synthesis.

= Our benchmark indicates that Diffusion stands out as the top deep generative
model for population synthesis. Its performance is comparable to that of the
leading probabilistic models.®

5Inour experimental framework
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Perspectives

== Diffusion is better, but at which cost ?

Model Training + Sampling Time
BN (tree) | 7seconds

BN (hill) 9 seconds

Diffusion 78 minutes

Table: Time for training and sampling for the different models for a training set of 1%. For
diffusion, 76 minutes are spent for the training.

‘.’< Université
~" Gustave Eiffel
2025/06/11 Vianey Darsel Population Synthesis with Deep Generative Models - is it worth it? 28/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References
0000000 0000000 [e]o]e} 00000 00000000 oe o

Perspectives

== Diffusion is better, but at which cost ?

Model Training + Sampling Time
BN (tree) | 7seconds

BN (hill) 9 seconds

Diffusion 78 minutes

Table: Time for training and sampling for the different models for a training set of 1%. For
diffusion, 76 minutes are spent for the training.

= One important criterion that is omitted: Privacy
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Perspectives

== Diffusion is better, but at which cost ?

Model Training + Sampling Time
BN (tree) | 7seconds

BN (hill) 9 seconds

Diffusion 78 minutes

Table: Time for training and sampling for the different models for a training set of 1%. For
diffusion, 76 minutes are spent for the training.

= One important criterion that is omitted: Privacy

= See the impact of Deep Generative Models (and Diffusion), on more complex
tasks, such as Population Synthesis at the Household generation orin a time
perspective
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Derivation SRMSE




Let consider
-_—Z = (Z1,Zg7 ey Zm) a multi-categorical variable, where Z; has hy modalities (1, ... hy).

— True frequencies: Vu € {1,...,he}, fiow = 7~
— Estimated frequencies: Yk € [1,...,m],Yu € {1,..., e}, i = (14 (—1)Yer) fru-

SRMSE(Z,2) SRMSE3(2,2)
m m
ZZ fiu— fku \/th *Z Z frou— Fiw) “ x hy
k=1u=1 mi=\ o=
m  hy m (9) 1 he /2 (10)
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Comparing SRMSE metrics

M.



Comparison SRMSE3 with SRMSE

0.03% of the total population

Marginal Bivariate Trivariate
SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 0.0575 0.0449 0.454 0.268 1.49 0.774
BN (tree) 0.0615 0.0458 0.499 0.27 1.62 0.777
MCMC (freq.) 317 2.68 127 9.63 40.9 294
MCMC (Bayesian) 137 0.749 345 1.54 715 276
VAE (Raw data) 0.653 0.51 193 132 4.67 282
VAE (Embedding data) 0.475 0.348 146 0.873 3.61 18
GAN (Raw data) 0.504 0.251 14 0.613 317 126
GAN (Embedding data) 0.638 0.366 183 0.888 424 1.81
Diffusion 0.218 0.155 0.654 0.383 158 0.818
1% of the total population
Marginal Bivariate Trivariate
SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3

BN (hill) on9 0.0412 0.392 0.178 1.06 0.496
BN (tree) 0.118 0.0383 0.571 0.27 174 0.778
MCMC (freq.) 213 127 6.65 333 16.6 714
MCMC (Bayesian) 13 0.741 336 154 7.09 279
VAE (Raw data) 133 0.767 an 19 10.5 427
VAE (Embedding data) 0.386 0.261 117 0.636 2.89 133
GAN (Raw data) 0.451 0.232 122 0.519 27 1.02
GAN (Embedding data) 0179 o118 0.518 0.281 124 0.595
Diffusion 0166 0.107 0.463 0.252 1.08 0.522

Table: Impact on the measurements of using SRMSE5 rather than SRMSE
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0.03% of the total population

Marginal Bivariate Trivariate
SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 1 1 1 1 1 1
BN (tree) 2 2 2 2 3 2
MCMC (freq.) 9 9 9 9 9 9
MCMC (Bayesian) 8 8 8 8 8 7
VAE (Raw data) 7 7 7 7 7 8
VAE (Embedding data) 4 5 5 5 5 5
GAN (Raw data) 5 4 4 4 4 4
GAN (Embedding data) 6 6 6 6 6 6
Diffusion 3 3 3 3 2 3
1% of the total population
Marginal Bivariate Trivariate
SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3

BN (hill) 2 2 1 1 1 1
BN (tree) 1 1 4 3 4 4
MCMC (freq.) 9 9 9 9 9 9
MCMC (Bayesian) 7 7 7 7 7 7
VAE (Raw data) 8 8 8 8 8 8
VAE (Embedding data) 5 6 5 6 6 6
GAN (Raw data) 6 5 6 5 5 5
GAN (Embedding data) 4 4 3 4 3 3
Diffusion 3 3 2 2 2 2

Table: Impact on the ranking of using SRMSEj3 rather than SRMSE
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Complementary Results




Results with Training size of 0.03% of the total population (DGMs)

. ) Distribution | Originality | Realism
DGM Continuous data representation SRMSE SSOTT | sscioT
All continuous 1.21 42.91% 10.16%
Diffusion Only age continuous 0.693 38.56% 5.74%
All categorical 116 77.3% 43.22%
All continuous 256 38.98% 19.55%
GAN (Embedding data) | Only age continuous 1.82 43.2% 23.17%
All categorical 1.64 79.05% 50.31%
A1l continuous 1.37 3111% 11.08%
GAN (Raw data) Only age continuous 0.915 30.22% 10.31%
A1l categorical 0.881 40.8.6% 1411%
All continuous 1.81 51.69% 20.99%
VAE (Embedding data) Only age continuous 1.35 7118% 32.64%
A1l categorical 17 90.9% 49.68%
All continuous 2.88 52.86% 33.72%
VAE (Raw data) Only age continuous 2.64 57.63% 34.91%
All categorical 3.44 46.57% 2412%

Table: Comparison of the different DGMs and encodings on three criteria. For each metric, the
optimal value is the smallest one and is highlighted in bold.
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Results with Training size of 1% of the total population (DGMs)

. ) Distribution | Originality | Realism
DGM Continuous data representation SRMSE SSOTT | sscioT
All continuous 0.422 43.46% 1.82%
Diffusion Only age continuous 0.471 49.97% 3.47%
All categorical 0.678 74.76% 261%
All continuous 1.32 41.64% 6.08%
GAN (Embedding data) | Only age continuous 1.04 44.5% 8.08%
All categorical 0.893 70.57% 27.32%
A1l continuous 146 61.9% 24.76%
GAN (Raw data) Only age continuous 0.543 42.64% 3.09%
A1l categorical 0.685 44.54% 3.68%
All continuous 1.89 83.84% 27.8%
VAE (Embedding data) Only age continuous 143 74.04% 25.35%
A1l categorical 1.58 91.2% 4758%
All continuous 3.26 80.31% 42.34%
VAE (Raw data) Only age continuous 2.96 79.98% 41.37%
All categorical 3.25 68.45% 32.76%

Table: Comparison of the different DGMs and encodings on three criteria. For each metric, the
optimal value is the smallest one and is highlighted in bold.
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Comparison with two criteria at the same time for DGMs
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Bar chart comparing Bayesian Network with Diffusion
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Architectures
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Figure: Transformer VAE architecture
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Figure: VAE (embedding data) architecture
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)s(

Université
Gustave Eiffel



Generator Discriminator

Linear(4 X dneur, 2 X dneur) ‘ ‘ Linear(demb. dneur) ‘
[ ] [ e ]

[ |

]

Linear(2 x d, 4 X dnewr) ‘

]

‘ Lot x G 1) ‘

Batch Normalization
Linear(doms, demb)
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