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Use of a synthetic population

A Synthetic Population is necessary for any agent-basedmodels

Different use cases with agent-basedmodels:

– Transport Simulation (W. Axhausen et al., 2016)

– Epidemic Simulation (Kerr et al., 2021)

– Social InteractionModel (Macal et al., 2014)

– Poverty modelisation (Gisby et al., 2023)

– …
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How to pass from individuals to data ?

Mike, 40 yo, no
degree, 2 cars

Lisa, 29 yo, Mas-
ter Deg., 0 car

Jonathan, 12 yo,
no degree, 0 car

Zoe, 16 yo, no
degree, 1 car

→
Sex Age Education level Number of cars …
M 40 NoDegree 2 …
F 29 Master Degree 0 …
M 13 No Degree 0 …
F 16 No Degree 1 …
… … … … …
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Different sources of data

In transport, we have 2main sources of data for population synthesis, whose size
depends on the country:

– Household Travel Survey (HTS)∼ 0.03% of the total population

– Census Data∼ 1% of the total population1

Population synthesis: using algorithm to generate a full synthetic
population from limited datasets

1In France, we can get in open-access a total reconstruction of the population
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Population Synthesis in one scheme

→
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A generated synthetic population must respect several criteria :

Criterion Goal
Distribution Comparing the distribution of the generated population with

the true population.
Realism Verifying that each generated sample is realistic.
Originality Capacity to generate unseen samples.

Whichmetrics to evaluate a synthetic population?

In the last 15 years, many algorithms have been applied to generate a synthetic

population, from reproduction models to Deep GenerativeModels.

Which algorithm is recommended for Population Synthesis?
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Data Notations

Xtrain → Data for model training

Xtest → Data for model evaluation

Xgen → Data generated by themodel
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Distribution evaluation: SRMSE3

We propose using themean of the Standardized RootedMean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEijk(Xgen,Xtest) =
√

∑
xijk

(fgen(xijk)− ftest(xijk))
2×|Ωi|× |Ωj|× |Ωk|

SRMSE3(Xgen,Xtest) =
1(n
3

) ∑
(i,j,k)∈({1,...,n}3 )

SRMSEijk(Xgen,Xtest)
(1)

Arguments:

– Most widely usedmetric (SRMSE)

– Considering the trivariate distributions allows grabbingmarginals, and bivariate
distributions without exploding the computation time (trivariate)

– Balancedmetric on all combinations (mean)

2025/06/11 Vianey Darsel Population Synthesis with Deep GenerativeModels - is it worth it? 9/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References

Distribution evaluation: SRMSE3

We propose using themean of the Standardized RootedMean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEijk(Xgen,Xtest) =
√

∑
xijk

(fgen(xijk)− ftest(xijk))
2×|Ωi|× |Ωj|× |Ωk|

SRMSE3(Xgen,Xtest) =
1(n
3

) ∑
(i,j,k)∈({1,...,n}3 )

SRMSEijk(Xgen,Xtest)
(2)

Arguments:

– Most widely usedmetric (SRMSE)

– Considering the trivariate distributions allows grabbingmarginals, and bivariate
distributions without exploding the computation time (trivariate)

– Balancedmetric on all combinations (mean)

2025/06/11 Vianey Darsel Population Synthesis with Deep GenerativeModels - is it worth it? 9/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References

Distribution evaluation: SRMSE3

We propose using themean of the Standardized RootedMean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEijk(Xgen,Xtest) =
√

∑
xijk

(fgen(xijk)− ftest(xijk))
2×|Ωi|× |Ωj|× |Ωk|

SRMSE3(Xgen,Xtest) =
1(n
3

) ∑
(i,j,k)∈({1,...,n}3 )

SRMSEijk(Xgen,Xtest)
(3)

Arguments:

– Most widely usedmetric (SRMSE)

– Considering the trivariate distributions allows grabbingmarginals, and bivariate
distributions without exploding the computation time (trivariate)

– Balancedmetric on all combinations (mean)

2025/06/11 Vianey Darsel Population Synthesis with Deep GenerativeModels - is it worth it? 9/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References

Distribution evaluation: SRMSE3

We propose using themean of the Standardized RootedMean Squared Error (SRMSE)
on the distributions of all possible combinations of three variables.

SRMSEijk(Xgen,Xtest) =
√

∑
xijk

(fgen(xijk)− ftest(xijk))
2×|Ωi|× |Ωj|× |Ωk|

SRMSE3(Xgen,Xtest) =
1(n
3

) ∑
(i,j,k)∈({1,...,n}3 )

SRMSEijk(Xgen,Xtest)
(4)

Arguments:

– Most widely usedmetric (SRMSE)

– Considering the trivariate distributions allows grabbingmarginals, and bivariate
distributions without exploding the computation time (trivariate)

– Balancedmetric on all combinations (mean)

2025/06/11 Vianey Darsel Population Synthesis with Deep GenerativeModels - is it worth it? 9/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References

Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).
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Realism evaluation: Structural zero definition

Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

All possible combinations of modalities theoretically
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Realism evaluation: Structural zero definition
Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

A structural zero is a sample that is a combination of attributes that do not exist in the
real population.

2025/06/11 Vianey Darsel Population Synthesis with Deep GenerativeModels - is it worth it? 10/29



Introduction Population Synthesis Evaluation Models in Population Synthesis Introduction to Diffusion models Benchmark Conclusion References

Realism evaluation: Detection method in the literature

Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

D is not accessible in practice.
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Realism evaluation: Detection method in the literature
Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

An approximation is done in the literature: all samples that do belong to neither the
training data, nor the testing data is a structural zero.
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Realism evaluation: Detection method in the literature
Structural Zeros: generated samples that should not have been generated (Borysov
et al., 2019).

This detection can lead to false positive structural zeros. This phenomenon grows with
the number of attributes.
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Realism evaluation: SSCIOT

New detection method: at least one couple of its attributes is
absent from both training and testing sets

Share of Samples with a Couple of Instances that is Out of Testing data:

SSCIOT(Xgen,Xtest,Xtrain) =
∑x∈Xgen

(
1−∏(i,j)∈({1,...,n}2 )1xij∈Cij

)
|Xgen|

Argument:

– This metric that does not suffer from the curse of dimensionality

Cij is the restriction ofC to the variables i and j
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Originality evaluation: SSOTT

Sampling Zeros: Generated samples that are in real population, but not in training data
(Garrido et al., 2020).

Transform into a minimizing metric:
Share of Samples Out of Training and Testing:

SSOTT=1−
∑x∈Xgen

1x∈C\B

∑x∈Xgen
1x∈B̄

=
∑x∈Xgen

1x∈A\(B∪C)

∑x∈Xgen
1x∈B̄

(5)

Argument:

– Minimizing metric with 0 as minimal score

Detection method:
generated samples that
belong to testing data, but
not to training data
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(6)

Argument:

– Minimizing metric with 0 as minimal score

Our target area.
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Models in Population Synthesis

3 types of models in Population Synthesis:

– ReproductionModels (Beckman et al., 1996; Voas andWilliamson, 2000; Guo and
Bhat, 2007)

– Probabilistic Models (Farooq et al., 2013; Sun and Erath, 2015; Hu et al., 2018)

– DeepGenerativeModels (Borysov et al., 2019; Garrido et al., 2020; Kim and
Bansal, 2023)
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DeepGenerativeModels in Population Synthesis

State-of-the-art Deep GenerativeModel First Implementation with Tabular
for image synthesis data in Population Synthesis
Variational Auto Encoder

Borysov et al. (2019)
(Kingma andWelling, 2013)

Generative Adversarial Network
Garrido et al. (2020)

(Goodfellow et al., 2014)
DiffusionModel

?
(Song and Ermon, 2019)

Table: Chronological state-of-the-art Deep GenerativeModel and its implementation in
Population Synthesis
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Philosophy of DiffusionModel

Noising data is easy

Sampling = Denoising
Training = Noising
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Philosophy of DiffusionModel

Diffusion aims to learn how to denoise a signal

Sampling = Denoising
Training = Noising
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Mathematical derivations of the models (Song et al., 2022)

Noising: dXt = f(Xt, t)dt+g(t)dw

Denoising: dXt = [f(Xt, t)−g(t)2∇X logpt(Xt)]dt+g(t)dw̄
dXt = [f(Xt, t)−g(t)2∇X logpt(Xt)]dt+g(t)dw̄

where:

– f is the drift function.

– g is the diffusion coefficient.

– w and w̄ are standardWiener processes.
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But only designed for continuous data

Some terms cannot be adapted for categorical variables:

dXt = f(Xt, t)dt+g(t)dw (7)

dXt = [f(Xt, t)−g(t)2∇X logpt(Xt)]dt+g(t)dw̄ (8)

Unlike VAE and GAN, diffusion cannot be apply directly for tabular data synthesis
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Adapted Diffusion model for Tabular Data Synthesis: TabSyn by
Zhang et al. (2023)

– Themodel we used in our experiments

– It was the model with the best performance for tabular data generation at the
publication of the article
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Benchmark data: French census data in 2015 in Île-de-France

Attributes description: 12 attributes (3 numerical
and 9 categorical)

Two scenarios for training data:

– Census data scenario: 1% of the population

– Household Travel Survey scenario: 0.03% of
the population

Testing data: 23% of the total population

Attribute Data type
Age integer

Sex binary

Last diploma category

Number of persons in the
household

integer

Type of household category

Type of professional activity category

Family link category

Married boolean

Department category

Number of cars integer

Socio-professional category category

Type of accommodation category
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Experiments

1) Comparing Deep GenerativeModels with various data encoding

2) Comparing the best model from the first experiments with Probabilistic models
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Benchmark of Deep GenerativeModels: protocol

Comparison of five Deep GenerativeModels:

– Variational Auto Encoder (with and without Transformer VAE embedding)

– Generative Adversarial Network (with and without Transformer VAE embedding)

– DiffusionModel

With three different encodings for numerical variables:

– All variables are categorical

– All variables are categorical, except for age, which is continuous.

– All numerical variables are continuous.
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Benchmark of Deep GenerativeModels: protocol

5 DGMs
VAE (Raw data)
VAE (Embedding data)
GAN (Raw data)
GAN (Embedding data)
Diffusion

2 data scenarios
Census data (1%)
HTS (0.03%)

3 data encodings
All numerical as Categorical
Only Age as Continuous
All numerical as Continuous

3metrics
SRMSE3

SSCIOT
SSOTT
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Results

– At 0.03%, Diffusion with
only age continuous is best
in Distribution and Realism,
and correct in Originality

– At 1%, Diffusion with all
continuous is best in
Distribution and Realism,
and almost in Originality
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Comparison between Deep GenerativeModel and Probabilistic
Models: protocol

5Models
Monte Carlo Markov Chain (freq.)
Monte Carlo Markov Chain (Bayesian)
Bayesian Network (tree)
Bayesian Network (hill)
Diffusion

2 data scenarios
Census data (1%)
HTS (0.03%)

3metrics
SRMSE3

SSCIOT
SSOTT
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Results
Training size of 0.03% of the total population

Model
Distribution Realism Originality

SRMSE SSCIOT SSOTT
MCMC (freq.) 28.9 0% NC
MCMC (Bayesian) 2.81 96.45% 99.99%
BN (hill) 0.773 4.62% 50.61%
BN (tree) 0.79 0.69% 48.67%
Diffusion 0.693 5.74% 38.56%

Training size of 1% of the total population

Model
Distribution Realism Originality

SRMSE SSCIOT SSOTT
MCMC (freq.) 6.34 0% NC
MCMC (Bayesian) 2.84 98.07% 100.0%
BN (hill) 0.432 0.37% 46.29%
BN (tree) 0.676 3.4% 60.54%
Diffusion 0.422 1.82% 43.46%

Table: Comparison of the best DGMwith probabilistic models on three criteria.
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Conclusion

– We present three metrics evaluating the distribution, the realism, and the
originality of a synthetic population.

– We introduce Diffusion models for Population Synthesis.

– Our benchmark indicates that Diffusion stands out as the top deep generative
model for population synthesis. Its performance is comparable to that of the
leading probabilistic models.2
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Conclusion

– We present three metrics evaluating the distribution, the realism, and the
originality of a synthetic population.

– We introduce Diffusion models for Population Synthesis.

– Our benchmark indicates that Diffusion stands out as the top deep generative
model for population synthesis. Its performance is comparable to that of the
leading probabilistic models.5

5In our experimental framework
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Perspectives

– Diffusion is better, but at which cost ?
Model Training + Sampling Time
BN (tree) 7 seconds
BN (hill) 9 seconds
Diffusion 78minutes

Table: Time for training and sampling for the different models for a training set of 1%. For
diffusion, 76 minutes are spent for the training.

– One important criterion that is omitted: Privacy

– See the impact of Deep GenerativeModels (and Diffusion), on more complex
tasks, such as Population Synthesis at the Household generation or in a time
perspective
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Derivation SRMSE



Let consider

– Z= (Z1,Z2, ...,Zm) amulti-categorical variable, where Zk has hk modalities (1, ...hk).

– True frequencies: ∀u ∈ {1, ...,hk}, fk,u = 1
hk

– Estimated frequencies: ∀k ∈ [1, ...,m],∀u ∈ {1, ...,hk}, f̂k,u = (1+(−1)uek)fk,u.
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∑
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∑
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SRMSE3(Z, Ẑ)
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Comparing SRMSEmetrics



Comparison SRMSE3 with SRMSE

0.03% of the total population
Marginal Bivariate Trivariate

SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 0.0575 0.0449 0.454 0.268 1.49 0.774
BN (tree) 0.0615 0.0458 0.499 0.27 1.62 0.777
MCMC (freq.) 3.17 2.68 12.7 9.63 40.9 29.4
MCMC (Bayesian) 1.37 0.749 3.45 1.54 7.15 2.76
VAE (Raw data) 0.653 0.51 1.93 1.32 4.67 2.82
VAE (Embedding data) 0.475 0.348 1.46 0.873 3.61 1.8
GAN (Raw data) 0.504 0.251 1.4 0.613 3.17 1.26
GAN (Embedding data) 0.638 0.366 1.83 0.888 4.24 1.81
Diffusion 0.218 0.155 0.654 0.383 1.58 0.818

1% of the total population
Marginal Bivariate Trivariate

SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 0.119 0.0412 0.392 0.178 1.06 0.496
BN (tree) 0.118 0.0383 0.571 0.27 1.74 0.778
MCMC (freq.) 2.13 1.27 6.65 3.33 16.6 7.14
MCMC (Bayesian) 1.3 0.741 3.36 1.54 7.09 2.79
VAE (Raw data) 1.33 0.767 4.11 1.9 10.5 4.27
VAE (Embedding data) 0.386 0.261 1.17 0.636 2.89 1.33
GAN (Raw data) 0.451 0.232 1.22 0.519 2.7 1.02
GAN (Embedding data) 0.179 0.118 0.518 0.281 1.24 0.595
Diffusion 0.166 0.107 0.463 0.252 1.08 0.522

Table: Impact on themeasurements of using SRMSE3 rather than SRMSE



0.03% of the total population
Marginal Bivariate Trivariate

SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 1 1 1 1 1 1
BN (tree) 2 2 2 2 3 2
MCMC (freq.) 9 9 9 9 9 9
MCMC (Bayesian) 8 8 8 8 8 7
VAE (Raw data) 7 7 7 7 7 8
VAE (Embedding data) 4 5 5 5 5 5
GAN (Raw data) 5 4 4 4 4 4
GAN (Embedding data) 6 6 6 6 6 6
Diffusion 3 3 3 3 2 3

1% of the total population
Marginal Bivariate Trivariate

SRMSE SRMSE3 SRMSE SRMSE3 SRMSE SRMSE3
BN (hill) 2 2 1 1 1 1
BN (tree) 1 1 4 3 4 4
MCMC (freq.) 9 9 9 9 9 9
MCMC (Bayesian) 7 7 7 7 7 7
VAE (Raw data) 8 8 8 8 8 8
VAE (Embedding data) 5 6 5 6 6 6
GAN (Raw data) 6 5 6 5 5 5
GAN (Embedding data) 4 4 3 4 3 3
Diffusion 3 3 2 2 2 2

Table: Impact on the ranking of using SRMSE3 rather than SRMSE



Complementary Results



Results with Training size of 0.03% of the total population (DGMs)

DGM Continuous data representation
Distribution Originality Realism

SRMSE SSOTT SSCIOT

Diffusion
All continuous 1.21 42.91% 10.16%
Only age continuous 0.693 38.56% 5.74%
All categorical 1.16 77.3% 43.22%

GAN (Embedding data)
All continuous 2.56 38.98% 19.55%
Only age continuous 1.82 43.2% 23.17%
All categorical 1.64 79.05% 50.31%

GAN (Raw data)
All continuous 1.37 31.11% 11.08%
Only age continuous 0.915 30.22% 10.31%
All categorical 0.881 40.8.6% 14.11%

VAE (Embedding data)
All continuous 1.81 51.69% 20.99%
Only age continuous 1.35 71.18% 32.64%
All categorical 1.7 90.9% 49.68%

VAE (Raw data)
All continuous 2.88 52.86% 33.72%
Only age continuous 2.64 57.63% 34.91%
All categorical 3.44 46.57% 24.12%

Table: Comparison of the different DGMs and encodings on three criteria. For eachmetric, the
optimal value is the smallest one and is highlighted in bold.



Results with Training size of 1% of the total population (DGMs)

DGM Continuous data representation
Distribution Originality Realism

SRMSE SSOTT SSCIOT

Diffusion
All continuous 0.422 43.46% 1.82%
Only age continuous 0.471 49.97% 3.47%
All categorical 0.678 74.76% 26.1%

GAN (Embedding data)
All continuous 1.32 41.64% 6.08%
Only age continuous 1.04 44.5% 8.08%
All categorical 0.893 70.57% 27.32%

GAN (Raw data)
All continuous 1.46 61.9% 24.76%
Only age continuous 0.543 42.64% 3.09%
All categorical 0.685 44.54% 3.68%

VAE (Embedding data)
All continuous 1.89 83.84% 27.8%
Only age continuous 1.43 74.04% 25.35%
All categorical 1.58 91.2% 47.58%

VAE (Raw data)
All continuous 3.26 80.31% 42.34%
Only age continuous 2.96 79.98% 41.37%
All categorical 3.25 68.45% 32.76%

Table: Comparison of the different DGMs and encodings on three criteria. For eachmetric, the
optimal value is the smallest one and is highlighted in bold.



Comparison with two criteria at the same time for DGMs



Bar chart comparing Bayesian Network with Diffusion



Architectures



Figure: Transformer VAE architecture



Figure: Diffusion architecture



Figure: VAE (raw data) architecture



Figure: VAE (embedding data) architecture



Figure: GAN (raw data) architecture



Figure: GAN (embedding data) architecture
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